- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Chavali, Raghu Aditya (1)
-
Howard, Thomas M. (1)
-
Kent, Nathan (1)
-
Napoli, Michael E. (1)
-
Travers, Matthew (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sampling-based motion planning algorithms provide a means to adapt the behaviors of autonomous robots to changing or unknown a priori environmental conditions. However, as the size of the space over which a sampling-based approach needs to search is increased (perhaps due to considering robots with many degree of freedom) the computational limits necessary for real-time operation are quickly exceeded. To address this issue, this paper presents a novel sampling-based approach to locomotion planning for highly-articulated robots wherein the parameters associated with a class of locomotive behaviors (e.g., inter-leg coordination, stride length, etc.) are inferred in real-time using a sample-efficient algorithm. More specifically, this work presents a data-based approach wherein offline-learned optimal behaviors, represented using central pattern generators (CPGs), are used to train a class of probabilistic graphical models (PGMs). The trained PGMs are then used to inform a sampling distribution of inferred walking gaits for legged hexapod robots. Simulated as well as hardware results are presented to demonstrate the successful application of the online inference algorithm.more » « less
An official website of the United States government

Full Text Available